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Int roduct ion 

The EEG recorded i n  transverse and long i tud ina l  acce le ra t ion  and 

dur ing  v i b r a t i o n  o f  the whole body has been shown i n  previous s tud ies 

(Adey - e t  a l .  1961; Adey e t  a l .  1963; Winters e t  a l .  1963; Adey 1964; 

McNutt 1963) to prov ide a c lose  c o r r e l a t i o n  w i t h  leve ls  of  consciousness, 

as these may be modi f ied by embarrassment o f  cerebral  c i r c u l a t i o n  o r  by 

intense somesthetic barrages during v i b r a t i o n  (Harr is e t  a l .  1963; 

Mandel e t  a l .  1962). 

Necessarily, such s tud ies impose r igorous requirements on the e n t i r e  

sensing and recording system t o  ensure freedom from contamination o f  the 

records by connecting lead a r t i f a c t s  o r  environmental magnetic f i e l d s ,  

p a r t i c u l a r l y  dur ing  v i b r a t o r y  st imul i (Adey e t  a l .  1963). Our previous 

s tud ies employed anesthesia and shaking a f t e r  death as add i t i ona l  con t ro l s  

i n  support o f  the phys io log ica l  basis of  the apparent EEG "dr iv ing" 

induced by v ib ra t i on .  We have extended these observations i n  comparison 

o f  the e f f e c t s  o f  shaking i n  normal monkeys and t b s e  deprived of  

ves t i bu la r  inputs by b i l a t e r a l  e ighth nerve sect ion.  A recent communi- 

c a t i o n  from Nicholson and Guignard (1964) dismissed EEG d r i v i n g  dur ing 

v i b r a t i o n  as an a r t i f a c t .  

provides f u r t h e r  evidence, however, t h a t  the phenomenon has a physiolog- 

i c a l  basis, and emphasizes the need f o r  bo th  adequate methods o f  data 

a c q u i s i t i o n  i n  such tests,  and the value of more soph is t i ca ted  ana lys is  

than simple v i s u a l  inspect ion o f  paper records. 

Extensive computer ana lys is  o f  our data here 

We have a l s o  tes ted  the e f fec ts  on the EEG o f  compound p o s i t i v e  

accelerat ions in  s imu la t ion  of an ac tua l  booster p r o f i l e ,  and observed 

concurrent changes i n  cerebra l  and card iac funct ions f o l l o w i n g  a h igh  G 

"pu 1 se. ' I  
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Method and Ma te r ia l  

As in previous s tud ies (Adey e t  a1 . 1963), Macaca nemestrina 

monkeys (body weight 4 t o  6 Kg) were s t e r e o t a x i c a l l y  implanted w i t h  

b i p o l a r  recording electrodes i n  amygdala, hippocampus, nucleus centrum 

medianum and midbrain r e t i c u l a r  formation. 

Cent r i fug ing  tes ts  were performed i n  the f a c i l i t i e s  o f  the Un ive rs i t y  

o f  Southern C a l i f o r n i a  co l l abo ra t i ve l y  w i t h  D r .  J. P. Meehan, and compound 

accelerat ions were tested there w i th  the co l l abo ra t i on  of D r .  R. Hoffman, 

o f  NASA Ames Research Center. V ib ra t ion  s tud ies were performed w i t h  the 

generous assistance o f  the Douglas A i r c r a f t  Company, Santa Monica. Data 

a c q u i s i t i o n  involved simultaneous record ing on 8 o r  16 channel cha r t  

recorders, and on 7 channel Precis ion Instruments o r  14 channel Ampex 

tape recorders. Coding for subsequent computer ana lys is  was arranged 

w i t h  3 f i g u r e  b ina ry  coded decimal numbers recorded every 20 sec on bo 

cha r t  and magnetic tape recorders. Voice pro toco ls  were a l s o  recorded 

I n i t i a l  analyses of  some o f  t h i s  mater ia l  have been w i t h  a Sanei 

frequency analyzer, using resistance and capacitance f i l t e r  networks, 

w i  th f i v e  f i 1 t e r  ranges cover ing 3-6, 6-8, 8-13, 13-25 and 25-45 c/sec. 

Each ana lys is  epoch was 10 sec. i n  durat ion.  Much more comprehensive 

analyses were performed on subs tan t i a l l y  la rger  amounts o f  data, us ing  

d i g i t a l  computations developed i n  t h i s  laboratory  f o r  d isp lay  o f  

cross-spectral  funct ions,  inc lud ing shared amplitudes, phase angles 

and coherence funct ions.  Ed i t i ng  and d i g i t a l  conversion o f  the analog 

tapes was performed on an SDS 930 computer, and spec t ra l  computations 

performed on an IBM 7094 computer. Automated d i sp lay  o f  much o f  the 

spec t ra l  analyses was then completed on the SDS 930. 

h 
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I n  the v i b r a t i o n  tests ,  three normal animals and three others, 

w i t h  the e igh th  nerves b i l a t e r a l l y  sect ioned through a subocc ip i t a l  

approach t o  the p o s t e r i o r  c ran ia l  fossa, were used. These operated 

animals were al lowed a s i x  month recovery per iod,  du r ing  which the 

i n i t i a l  profound a t a x i a  and s p a t i a l  d i s o r i e n t a t i o n  subsided, and wa lk ing  

and s k i l l e d  body movements were resumed. 

were performed, i nc lud ing  preoperat ive con t ro l s .  No evidence of 

Repeated c a l o r i c  s t imu a t i o n s  

nystagmus was seen i n  postoperat ive tests ,  although i t  was r e g u l a r l y  

e l i c i t e d  preopera t ive ly .  

v i b r a t  i on. 

They were c a r e f u l l y  b l i n d f o l d e d  dur ing  

Resu 1 t s  

A. E f fec ts  o f  V i b r a t i o n  

The complex s t imulus pat terns i n i t i a t e d  by v i b r a t i o n  o f  the  whole 

body chal lenge the neurophys io log is t  t o  d i s t i n g u i s h  in  EEG records 

those changes which may r e l a t e  r e l i a b l y  t o  phys io log i ca l  responses i n  

b r a i n  t issue.  These d i s t i n c t i o n s  may r e s t  on bo th  q u a l i t a t i v e  and 

q u a n t i t a t i v e  evaluat ion,  bu t  i n  e i t h e r  case, r e q u i r e  de tec t i on  o f  

d i f f e r e n t i a l s  i n  the p a t t e r n  o f  EEG a c t i v i t y  dur ing  the v i b r a t o r y  

s t imulus which would a s s i s t  i n  s p e c i f i c a t i o n  o f  such phenomena as EEG 

"dr iv ing"  a t  the  shaking frequency as phys io log i ca l  o r  a r t i f a c t u a l .  

Our use of comprehensive spec t ra l  ana lys i s  has a ided m a t e r i a l l y  

i n  ach iev ing  such an experimental design. Un l i ke  frequency ana lys is ,  

spec t ra l  ana lys is  a l lows s p e c i f i c a t i o n  o f  a gamut o f  shared r e l a t i o n s  

between two wave t r a i n s ,  on a wave by wave basis, f o r  such parameters 

as shared amplitude, phase angle, and q u i t e  impor tant ly ,  the  coherence 

o r  l i n e a r  p r e d i c t a b i l i t y  of r e l a t i o n s  between channels. The ac tua l  
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techniques have been described i n  de ta i  1 elsewhere (Walter 1963; 

Walter and Adey 1963; Adey 1965; Walter e t  a l .  1965), b u t  i t  may be 

emphasized t h a t  t h e i r  u t i l i z a t i o n  f o r  ana lys is  o f  massive amounts of 

mul t ichannel  data i s  on l y  poss ib le  by d i g i t a l  computation. 

B r i e f l y ,  we have examined the e f f e c t s  o f  v i b r a t i o n  over a spectrum 

from 5 to 40 d s e c ,  us ing 0.25 inch double ampli tude between 5 and 13 

c/sec, and 26 peak-to-peak i n  the range from 13 t o  40 c/sec, i n  bo th  

ascending and descending sequences o f  frequencies. Each EEG channel 

was examined f o r  auto-spect ra l  densi ty  i n  r e s t i n g  records, and a t  i n t e r v a l s  

o f  one cyc le  across the shaking spectrum from 5 t o  29 c/sec. S i m i l a r  

spec t ra l  dens i ty  analyses were made f o r  the  t a b l e  and head accelerometers. 

I t  was thus poss ib le  t o  compare peaks o f  spec t ra l  dens i ty  i n  the  EEG 

w i t h  those i n  the  accelerometers. Cross spec t ra l  analyses, w i t h  

c a l c u l a t i o n  o f  coherence, were then prepared. 

i nd i ca ted  s i g n i f i c a n t  l eve l s  of shared a c t i v i t y  between cerebra l  s t ruc -  

tures on the one hand, and also, the degree o f  i n t e r r e l a t i o n  between 

cerebra l  e l e c t r i c a l  a c t i v i t y  and head and t a b l e  o s c i l l a t i o n s .  I t  i s  n o t  

poss ib le  t o  present  here the d e t a i l e d  aspects o f  a l l  the s u b t l e  

i n t e r r e l a t i o n s  so revealed. We may merely emphasize t h a t  induced EEG 

r h y t h m i c i t y  occur r ing  a t  c e r t a i n  frequencies of  whole body v i b r a t i o n  

has the c h a r a c t e r i s t i c s  o f  a phys io log ica l  "driving," and appears 

d i s t i ngu ishab le  f rom s u p e r f i c i a l l y  s i m i l a r  phenomena o f  a r t i f a c t u a l  

o r  i gin.  

They s e n s i t i v e l y  

1. Autospectra o f  EEG records from c o r t i c a l  and deep s t ruc tu res  

a t  r e s t  and dur inq  v ib ra t i on .  

A th ree  dimensional d i sp lay  has been adopted t o  a l l o w  a synopt ic  
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view of changing spectral density in a particular lead across a 

complete "sweep" of vibration frequencies. 

on 20 sec of EEG record, and the EEG autospectrum displayed on the 

ordinates, the vibration frequencies on the abscissae, and spectral 

density on the Z axis. 

Each analysis was performed 

a. Chanqes in EEG autospectra of normal monkeys induced by vibration. 

Surface leads from visual cortex typical ly showed little or no 

evidence of  driving below 9 c/sec, despite powerful head movements. 

In the example shown (Fig. lA), shaking at 6 c/sec was accompanied by 

the highest spectral peaks at 2, 4 and 5 c/sec, and only a broad peak 

from 6 to 9 c/sec at lower energy levels. With 9, 1 1  and 12 c/sec 

shaking, the highest peak occurred at the shaking frequency, as in 

previous studies (Adey et al. 1963) but other peaks of almost equivalent 

intensity occurred in the range from 2 to 7 c/sec. 

peak in this series of spectral analyses occurred at 1 1  c/sec with 

1 1  c/sec shaking. 

c/sec, the highest EEG energy peaks were at 9 c/sec, with smaller peaks 

at the shaking frequencies. Shaking at 15 to 17 c/sec showed highest 

energy peaks at the shaking frequency, but major peaks also appeared 

at 2, 4 and 9 c/sec. Thus, the selective character of driving at the 

shaking frequency, and the occurrence of maximum peaks at frequencies 

other than that of the shaker, and not harmonically related to shaking 

frequencies clearly support an origin other than in an electromechanical 

artifact. 

The highest energy 

In the range of shaking frequencies from 12 to 14 

Similar dissociations between EEG spectral peak and the frequency 

of shaking occurred in the midbrain reticular formation and in  nucleus 
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centrum medianum (Fig. IC and D). 

despi te  s t rong head shaking a t  5 c/sec, the EEG power a t  5 d s e c  was low, 

w i t h  a broad peak from 6 t o  9 c/sec, and lesser peaks from 2 to  4 c/sec. 

S i m i l a r l y  w i t h  7 c/sec shaking, no peak occurred i n  the EEG spectrum. 

Spectral  peaks a t  the shaking frequency d i d  occur w i t h  9 and 10 c/sec 

shaking, but no such peak occurred w i t h  12 c/sec shaking, despi te  h igh  

EEG spec t ra l  energy a t  7, 8 and 9 c/sec. 

c/sec shaking, no EEG peak occurred a t  the shaking frequency, and 

h ighest  EEG energy was a t  9 c/sec. 

small  peak a t  the shaking frequency. 

I n  the midbrain r e t i c u l a r  formation, 

S im i la r l y ,  w i t h  14 and 15 

Shaking a t  17 c/sec produced a 

I n  nucleus centrum medianum, maximum EEG energy a t  shaking 

frequencies occurred on ly  i n  narrow sectors o f  the shaking spectrum, 

a t  10 and 1 1  c/sec, and i n  the range from 15 t o  17 c/sec. Dur ing 

5 c/sec shaking, the h ighest  energy i n  the EEG spectrum was a t  22 c/sec, 

w i t h  a smal ler  peak a t  5 c/sec, and minor de f l ec t i ons  a t  8 and 11 c/sec. 

No "dr iv ing"  peaks occurred w i t h  7 o r  9 c/sec shaking, and w i t h  12 

c/sec shaking, EEG spect ra l  energy a t  t h a t  frequency was lower than 

i n  the range 1 t o  8 c/sec. 

EEG spec t ra l  peaks a t  the shaking frequency, b u t  i n  v i b r a t i o n  a t  13 and 

14 c/sec, these peaks were smaller than those i n  the EEG spectra 

between 2 and 9 c/sec. 

Beyond 12 c/sec, v i b r a t i o n  produced d e f i n i t e  

The amygdaloid basel ine spectrum exh ib i ted  a jagged contour, w i t h  

peaks a t  c lose  i n t e r v a l s  from 4 t o  20 c/sec (Fig. 1E). No increments 

occurred i n  these peaks i n  the lower shaking range from 5 t o  I 1  c/sec. 

I n  the range frm 13 t o  17 c/sec, shaking produced smal I peaks a t  those 

frequencies, bu t  the general contour of the EEG spectra re ta ined a 
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s t r i k i n g  resemblance t o  con t ro l s  throughout the v i b r a t i o n  sweep. 

b. EEG autospectra dur inq v ib ra t i on  a f t e r  b i l a t e r a l  e iqh th  nerve 

sect ion.  

Cer ta in  d i f fe rences  were noted i n  these EEG records i n  comparison 

w i t h  those from i n t a c t  animals ( f ig .  2). Subcor t ica l  leads from centrum 

medianum, and, i n  lesser degree, from the midbrain r e t i c u l a r  formation, 

showed a greater  tendency t o  "dr iv ing" a t  shaking frequencies than i n  

the i n t a c t  subjects.  While the evidence from the l i m i t e d  ser ies  ava i l ab le  

here cannot be considered categor ic i nd i ca t i on  o f  a q u a l i t a t i v e  d i f ference,  

i t s  consistency and the general spectral  cha rac te r i s t i cs  support such a 

view. Moreover, the f i nd ings  may bear d i r e c t l y  on e a r l i e r  work on 

i n t e r a c t i o n  o f  sp ina l  and ves t ibu la r  a f fe ren ts  i n  brainstem evoked 

p o t e n t i a l s  (Gernandt and G i  lmans 1960). 

In the  v i sua l  cor tex  (Fi 9. 2A), deep Val leys,  o r  "forbidden zones" 

occurred a t  c lose  i n te rva l s  across the basel ine EEG spectrum, p a r t i c u l a r l y  

a t  1 1  and 13 c/sec. This jagged contour was sustained i n  essent ia l  

features through the major p a r t  o f  the v i b r a t i o n  sweep. 

the EEG a t  shaking frequency occurred a t  S, 11,  13 and 16 c/sec, bu t  was 

associated w i t h  h igher  peaks in  other p a r t s  o f  the EEG spectrum, usua l ly  

"Driving" of 

i n  no simple harmonic r e l a t i o n  t o  the shaking frequency. 

I n  the amygdala (Fig. 2B), EEG spec t ra l  peaks a t  l o w  shaking 

frequencies were c l e a r l y  displaced from the d r i v i n g  frequencies. 

w i t h  7 c/sec shaking, the highest EEG spec t ra l  peak occurred a t  6 c/sec, 

Thus, 

w i t h  secondary peaks a t  12 and 14 c/sec. S im i la r l y ,  w i t h  9 c/sec shaking, 

no peak was found a t  t h a t  frequency, b u t  peaks were noted a t  13 and 14 

c/sec. A peak a t  11 c/sec occurred i n  the EEG spectrum w i t h  shaking a t  
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t h a t  frequency. Faster v i b r a t i o n  from 13 t o  18 d s e c  produced broad 

peaks i n  the EEG spectrum, often asymmetric w i t h  respect t o  the shaking 

frequency. 

I n  the hippocampus (Fig. 2E), st rong head movements w i t h  7 c/sec 

v i b r a t i o n  d id  no t  e l i c i t  an EEG spect ra l  peak a t  t h a t  frequency. 

shaking a t  9 t o  12 c/sec produced minor EEG "dr iv ing" peaks, but  the 

major energy of  the  spectrum remained i n  the range 3 to  7 c/sec. 

Faster 

Records from nucleus centrum medianum changed s t r i k i n g l y  a t  d i f f e r e n t  

pa r t s  o f  the v i b r a t i o n  sweep, and contrasted sharply w i t h  those i n  the 

i n t a c t  animal (Fig. 2C). Excel lent  "dr iv ing"  occurred a t  shaking 

frequencies from 9 to  18 c/sec, with evidence o f  subs tan t ia l  f i rs t -harmonic  

components. I n  much o f  the v i b r a t i o n  sweep, however, these dr iven  peaks 

were lower than the energy a t  1 to  3 c/sec. Moreover, d r i v i n g  a t  the  

fundamental frequency was observed i n  some cases t o  be low, as a t  5 

c/sec, whereas evoked EEG harmonic peaks a t  15, 20 and 25 c/sec were 

d ispropor t ionate ly  la rger  than would be an t i c ipa ted  from harmonic content 

of e i t h e r  shake tab le  o r  head displacement. 

D r i v ing  was a l s o  seen i n  the midbra in r e t i c u  

and exh ib i ted  both a selectiveness i n  r e l a t i o n  t o  

and more obvious d r i v i n g  peaks i n  the range from 

the i n t a c t  subject  described above. 

a r  format ion (Fig. 2D), 

shaking frequencies, 

1 t o  17 c/sec than i n  

2. Coherence between EEG records from d i f f e r e n t  s t ructures,  and 

between EEG records and accelerometers. 

From cross spec t ra l  analyses, we have der ived phase angles, shared 

amplitudes and coherence funct ions r e l a t i n g  p a i r s  o f  records. These 

parameters have been determined on a cyc le  by cyc le  bas is  across the  
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EEG spectrum a t  each shaking frequency. 

were noted i n  adjacent frequencies o f  the EEG spectrum. 

coherence funct ions w i l l  be discussed here, f o r  a l i m i t e d  ser ies o f  

i n te r re la t i ons .  

measure of 1 inear in te r re la t ionsh ips .  A h igh  coherence between b r a i n  

record and the shake t a b l e  would be expected to  support the  presence of 

pure ly  mechanical a r t i f a c t s  i f  i t  occurred i n  the EEG spectrum exc lus i ve l y  

a t  shaking frequencies; and a t  a l l  shaking frequencies associated w i t h  

v i o l e n t  head movements, wi thout  mani fest ing sharp ly  s e l e c t i v e  peaks a t  

d i f f e r e n t  pa r t s  o f  the v i b r a t i o n  sweep. 

Sharply vary ing phase angles 

Only the 

The coherence funct ion (Walter 1963) provides a sens i t i ve  

On the other  hand, h igh  

coherences between d i f f e r e n t  cerebral  s t ructures,  e i t h e r  a t  shaking 

frequencies when coherences w i t h  head o r  t ab le  accelerometers were low, 

or away from shaking frequencies where spec t ra l  energies were high, 

would support a phys io log ica l  basis f o r  the d r i v i n g  phenomenon. 

Representative examples w i  1 1  be discussed from extensive analyses i n  

normal animals, and a f t e r  e igh th  nerve sect ion.  

a. Coherence between cerebral s t ruc tu res  and t h e i r  r e l a t i o n s  w i t h  

head and tab le  accelerometers i n  the i n t a c t  animal. 

i) Coherence between centrum medianum and the v i sua l  cor tex  i n  

r e s t i n g  records reached s i g n i f i c a n t  leve ls  on l y  a t  17 and 18 d s e c  i n  

the fo l l ow ing  example (Fig. 3 ) .  

s i g n i f i c a n t  coherence l e v e l s  a t  fundamental v i b r a t i o n  frequencies. 

Thus, shaking a t  5 c/sec produced s i g n i f i c a n t  EEG coherence a t  6 and 22 

c/sec, b u t  remained low a t  5 d s e c .  

7 c/sec dur ing shaking a t  t h a t  frequency, bu t  s i g n i f i c a n t  a t  10 c/sec. 

Shaking a t  9 c/sec produced s i g n i f i c a n t  coherence a t  2 and 18 c/sec. 

Shaking below 10 c/sec produced no 

Coherence was s i m i l a r l y  low a t  
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Coherence became s i g n i f i c a n t  a t  the shaking frequency w i t h  11 c/sec 

v ib ra t i on ,  bu t  was s t r i k i n g l y  low i n  s i m i l a r  analyses w i t h  12 c/sec 

v ib ra t i on .  V ib ra t i on  i n  the range 12 t o  17 c/sec produced s i g n i f i c a n t  

coherence peaks a t  shaking frequencies. 

Emphasis may be placed on the appearance o f  h igh  coherence leve ls  

between these s t ruc tu res  a t  various EEG frequencies unre lated t o  

concurrent shaking frequencies, and absent from base l ine  records before 

or  a f t e r  shaking. Examples o f  these p l a s t i c  and t rans ien t  i n t e r r e l a t i o n s  

may be seen i n  the  s i g n i f i c a n t  coherence a t  6 and 22 c/sec w i t h  5 c/sec 

shaking, and i n  coherence a t  22 d s e c  w i t h  14 c/sec shaking. 

imply aspects of cerebral  system organization, w i t h  ephemeral shar ing o f  

a c t i v i t y  e l i c i t e d  by the  v ib ra to ry  vo l leys,  and n o t  detectable by previous 

techniques. 

They may 

ii) Shared a c t i v i t y  between midbrain r e t i c u l a r  format ion and v i s u a l  

cor tex  dur inq v ib ra t i on .  As i n  the ser ies j u s t  described, coherence i n  

basel ine records was s i g n i f i c a n t  on ly  i n  a narrow range a t  9 c/sec, and 

wh i le  t h i s  coherence pers is ted  dur ing shaking a t  many frequencies, the 

s i g n i f i c a n t  coherence ''windows" i n t e r r e l a t i n g  midbra in and v i sua l  cor tex  

opened remarkably dur ing v ibrat ion,  and most ly a t  frequencies q u i t e  

unre lated t o  the shaking r a t e  (Fig. 3D). Thus, shaking i n  the range 

from 5 t o  1 1  c/sec evoked s ign i f i can t  coherence a t  1, 6 ,  9, 14, 16 and 

22 c/sec, and i n  no case d i d  these induced coherences r e l a t e  t o  funda- 

mentals or  simple harmonics o f  the appl ied v ib ra t i on .  Moreover, i n  

a d d i t i o n  t o  the s t a t i s t i c a l l y  s i g n i f i c a n t  coherences c i ted ,  "submerged" 

peaks o f  coherence occurred a t  other than shaking frequencies, and 

approached b u t  d i d  no t  reach s i g n i f i c a n t  leve ls .  
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i i i) I n t e r r e l a t i o n s  o f  v isual  cor tex  and nucleus centrum medianum 

w i t h  head and tab le  accelerometers. 

w i t h  the tab le  accelerometer d i d  no t  reach s i g n i f i c a n t  leve ls  a t  funda- 

mental d r i v i n g  frequencies w i t h  shaking ra tes  below 1 1  c/sec, a l though 

s i g n i f i c a n t  coherence peaks appeared a t  other frequencies i n  the EEG 

spectrum (Fig. 38, C, E and F). 

associated w i t h  s i g n i f i c a n t  coherence a t  the fundamental frequency, and 

a t  bo th  harmonical ly r e l a t e d  and some harmonical ly unre la ted higher EEG 

frequencies. 

For both these s t ructures,  coherence 

Shaking a t  ra tes beyond 11 c/sec was 

S im i la r l y ,  coherence between EEG a c t i v i t y  i n  these s t ruc tu res  and a 

head accelerometer sensing v e r t i c a l  displacement was low a t  fundamental 

d r i v i n g  frequencies below 10 c/sec, despi te  v i o l e n t  head movement i n  

t h i s  shaking range. I n  the range from 11 t o  17 d s e c ,  shaking produced 

many coherent re la t ionsh ips  a t  fundamental d r i v  ng frequencies, and a t  

harmonical ly re la ted  and unrelated EEG frequenc es. 

b. Coherence between cerebral s t ruc tu res  and tab le  accelerometer 

a f t e r  b i l a t e r a l  e iqh th  nerve section. 

Coherence was measured between the tab le  accelerometer and the 

v i sua l  cortex,  hippocampus, amygdala, midbrain r e t i c u l a r  formation, and 

centrum medianum (Fig. 4). 

frequencies below 10 c/sec resembled t h a t  i n  the i n t a c t  animal, w i t h  

poo r l y  developed coherence w i t h  the EEG a t  fundamental d r i v i n g  

frequencies i n  the v i sua l  cortex,  hippocampus and midbrain r e t i c u l a r  

formation. On the other hand, centrum medianum and the amygdala showed 

st rong coherences i n  t h i s  range a t  fundamental shaking frequencies. 

With f a s t e r  shaking a t  11 t o  18 c/sec,both midbrain and centrum medianum 

The pa t te rn  o f  some re la t i onsh ips  a t  shaking 
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leads showed a wide range of coherent EEG frequencies, bu t  v i sua l  c o r t i c a l  

and amygdaloid leads continued t o  show coherences mainly i n  c lose r e l a t i o n  

t o  fundamental d r i v i n g  frequencies. They thus d i f f e r e d  from behavior of 

these leads i n  i n t a c t  animals. Section o f  the e igh th  nerves thus appeared 

t o  be without s t r i k i n g  e f fec t  on the pa t te rns  of coherence between tab le  

accelerometer and cerebra l  s t ructures dur ing  shaking, al though sune 

enhancement o f  coherence may occur w i t h  s t ruc tu res  c l o s e l y  r e l a t e d  t o  

somatic sensory pathways, inc lud ing nucleus centrum medianum and midbrain 

r e  t i c u 1 a r forma t i on. 

B. E f fec ts  o f  Accelerat ion 

Our previous s tud ies have indicated the e f fec ts  o f  both l ong i tud ina l  

and transverse accelerat ions on EEG records (Adey e t  a l ,  1961; Winters 

- e t  a l .  1962; Adey 1964). Although dramatic EEG changes accompany cerebra1 

c i r c u l a t o r y  embarrassment i n  long i tud ina l  acce le ra t ion  t o  blackout 

(-Gx), the present study has concerned I t s e l f  ra the r  w i t h  those e f f e c t s  

a r i s i n g  i n  transverse accelerat ions i n  "eyebal Is i n "  and "eyebal Is out" 

conf igurat ions (+G 

spinning the support couch around an ax i s  c o l l i n e a r  w i t h  t ha t  o f  the 

and -G ) , where these may a l s o  be compounded w i  t h  
Y Y 

transverse acce le ra t ion  (+Gx). 

the acce le ra t ion  p r o f i l e  experienced in  at ta inment o f  o r b i t a l  f l i g h t  

Such s imulat ions may accura te ly  reproduce 

w i t h  small boosters. 

1. Ef fects o f  compound accelerat ions on neocor t i ca l  and l i m b i c  

EEG records. 

The s imu la t ion  p r o f i l e  of  Fig. SA ind icates the acce le ra t ion  peaks 

and t h e i r  t y p i c a l  time course i n  attainment o f  o r b i t a l  f l i g h t .  I n  view 

of the complexi t ies o f  the experimental paradigm, on ly  one animal was 
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subjected t o  de ta i l ed  t e s t i n g  w i t h  EEG record ing as described here. 

Fur ther  t e s t s  a re  proceeding. 

The e f f e c t s  i n  the v i s u a l  cor tex (Fig. 5C)  of  the i n i t i a l  12G 

acce le ra t ion  were minor, w i t h  a small peak i n  energy i n  the 3 middle 

frequency bands from 6 t o  25 d s e c  as the acce le ra t ion  reached i t s  peak 

and suddenly decl ined. No s i g n i f i c a n t  peaks occurred i n  the low G 

loading o f  the second stage. 

by the 1G v e r t i c a l  l ine) ,  however, there was a r a p i d  increase i n  energy 

l e v e l s  between 6 and 13 c/sec, pe rs i s t i ng  f o r  most of  the coast ing phase. 

With stopping o f  the cen t r i f uge  ( ind ica ted  

Commencement o f  the f i n a l  o r b i t a l  i n j e c t i o n  phase, w i t h  SG o f  

t ransverse acce le ra t ion  and concomitant 100 r.p.m. sp in,  evoked a q u i t e  

d i f f e r e n t  pa t te rn  o f  energy d i s t r i b u t i o n  from simple accelerat ion.  

Marked energy peaks occurred i n  the l o w  frequency bands from 3 t o  8 

c/sec. Energy d i s t r i b u t i o n  rap id l y  resumed the cha rac te r i s t i cs  o f  

con t ro l  records a t  the end o f  the i n j e c t i o n  phase. 

The amygdala (Fig. SD) showed s i m i l a r  changes. A moderate ncrease 

i n  energy i n  the low frequency bands f r o m  3 t o  8 c/sec occurred n the 

"coasting" phase, w i t h  a c y c l i c  p e r i o d i c i t y  i n  peaks o f  30 t o  50 sec. 

Evidence o f  t h i s  pe r iod i c  peaking was detectable a t  h igher frequencies 

bu t  diminished progress ive ly  i n  the range f r o m  13 t o  45 c/sec. 

I n  the hippocampus (Fig. SB),  no s i g n i f i c a n t  changes i n  spect ra l  

content accompanied e i t h e r  i n i  t i a l  o r  terminal  phases o f  the boost 

s imulat ion,  although the energy leve ls  i n  the coast phase rose moderately, 

and exh ib i t ed  the c y c l i c  changes described i n  the amygdala. 

I n  summary, i t  would appear t h a t  changes l a s t i n g  through the 

coast ing phase may have been induced by the preceding h igh  G pulse i n  
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the first stage of booster acceleration, and may relate to cardiovascular 

readjustments and concomitant changes in cerebral oxygen tension 

occurring with such a pulse, as described by Kovalenko, Popkov and 

Chernyakov (1963). 

2. interrelations between cardiac irreqularity and paroxysmal EEG 

activity followinq hiqh G loadinq. 

The pulse rate slowed as the acceleration approached the initial 126 

peak (Fig. 5 C ) .  

amplitude slow waves appeared in many areas, including visual cortex, 

amygdala, hippocampus and midbrain reticular formation (Fig. 6D). A 

consistent accompaniment of  these paroxysms were missed beats in the EKG. 

The heart was regular between these epochs, with minor rate variations 

attributable to a sinus arrhythmia. 

2 sec of the onset of the slow wave paroxysm, and recurred at intervals 

of about 2 sec. 

During the following coasting phase, paroxysms o f  high 

The missed beats appeared within 

No comparable abnormalities were detected following combined 

centrifuging and spinning at lower accelerations around 56 (F 

These EEG phenomena occurred only after much higher accelerat 

may relate to readjustment in cerebral vascular mechanisms. 

noteworthy that abnormalities in cardiac regularity always f o  

the onset o f  the cerebral dysrhythmia. 

g. 6E). 

ons and 

t is 

1 owed 

Discuss ion 

In the complexities of multidimensional data derived from EEG 

records during such stimuli as whole body vibration over a wide 

frequency range, no single paradigm of experimental design, and no 

single technique of analysis is likely to provide unequivocal evidence 



-17- 

of physiological or artifactua 

relationships that rest on per 

frequencies appeared limited to frequencies in the range 

In this respect, careful attention to our recording techn 

differentials with barbiturate anesthesia not detected by 

and Guignard (1964). Absence of such differentials would 

origin of particular facets of inter- 

odicities in electrophysiological 

records. Even where electromechanical artifacts in sensing electrodes 

and recording leads have been essentially precluded, positive identifi- 

cation of physiological mechanisms has remained difficult. Our previous 

studies (Adey et al. 1963) indicated a profound reduction in 

vibration-induced driving during deep barbiturate anesthesia, and its 

disappearance on death of the animal. This driving activity at shaking 

0 to 15 c/sec. 

ques revealed 

t4 i chol son 

surely confirm 

the origin of such potentials in the swamping of the EEG by larger 

electrostatic artifacts in connecting cables and plug attachments. 

I f  an artifactual origin were still to be postulated for driven 

rhythms showing such frequency-selective characteristics, it would be 

necessary to seek a basis in local tissue relations with the implanted 

electrodes, since cables and plug systems are inherently precluded. 

Yet physically adjacent regions of brain tissue, such as the amygdala 

and hippocampus, or the midbrain reticular formation and nucleus centrum 

medianum, separated by only a few millimeters and presumably subjected 

to closely related vibration forces, have consistently shown distinctly 

different patterns of driving. I n  these circumstances, an artifactual 

origin seems highly unlikely. 

Coherence studies of linear predictability between EECs from 

different brain regions, and between cerebral structures and head and 
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table accelerometers strongly support this view. 

coherence Were induced between cortical and subcortical leads by shaking, 

at frequencies harmonically unrelated to shaking rates, and thus 

supportive of a physiological system interrelationship. Moreover, 

coherences between the EEG and head and table accelerometers were often 

observed to be low at the fundamental shaking frequency, but were then 

often high at harmonics having low energy, and also at frequencies not 

harmonically related to the shaking rate. 

Significant levels of 

Questions thus arise as to the possible physiological origin of the 

EEG driving. 

not essential, and, indeed, that driving in midbrain and cortical 

structures may increase after vestibular denervation. In converse 

experiments, Gernandt and Gi lmsns (1960) found that evoked potentials 

in the medulla were greatly augmented after section of the dorsal 

columns of the spinal cord, suggesting that these spinal influxes 

normally inhibit medullary responsiveness to vestibular stimulation, 

Evidence here from records in the centrum medianum suggests that the 

converse may also be true. We have previously suggested an origin in 

mechanoreceptors of thoracoabdominal structures. We have observed 

thoracoabdominal resonance at shaking frequencies of 10 to 15 c/sec, 

and have noted mechanical coupling of these resonances into cervical 

structures. 

cerebral and extracranial structures through the cranial blood pool, 

with evidence that intracerebral radioisotope distribution may 

fluctuate synchronously with respiration. 

The present study has shown that vestibular influxes are 

Oldendorf (1963) has drawn attention to coup1 ing between 

The possibility that direct mechanical excitation of cerebral 
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tissue may occur during vibration, either transcranially or by hydraulic 

coupling through vascular or cerebrospinal fluid channels, remains a 

matter for speculation. Weiss (1964) has drawn attention to the 

dynamics o f  membrane-bound incompressible bodies, and to the possible 

role of such incompressibility in neuronal mechanisms. 

complexities of the responsiveness of the central nervous system to 

kinetic stimuli merit further consideration in face of physical stresses 

not previously encountered in primate evolution. 

The fascinating 

Summary 

The effects of whole body vibration over the range from 5 to 40 

c/sec on cortical and subcortical EEG activity have been tested in the 

intact monkey (Macaca nemestrina) and after bilateral section of the 

vestibular nerves. 

cross-spectra, including calculations of shared amplitudes, phase 

angles and coherence. 

Extensive computed analyses were made of auto- and 

induced EEG rhythmicity occurring at certain frequencies of whole 

body vibration had the characteristics of a physiological "driving," 

and appears distinguishable from superficially similar phenomena of 

artifactual origin. Autospectral density plots showed little or no 

evidence of EEG driving below 9 c/sec, despite powerful head movements. 

Driving at the shaking rate was frequency selective and maximal in the 

range 10 to 15 c/sec. 

peaks occurred at other than shaking frequencies, and without harmonic 

rela ti onsh i p to shaking frequencies. 

However, in many instances, maximum EEG energy 

Coherence ( 1  inear predictability) was high between cortical and 



-20- 

subcor t i ca l  leads a t  EEG frequencies unrelated t o  concurrent shaking 

frequencies, and absent from baseline records before o r  a f t e r  shaking. 

This  may imply aspects of cerebral system organizat ion w i t h  ephemeral 

shar ing o f  a c t i v i t y  e l i c i t e d  by the v i b r a t o r y  vo l l eys .  

between head and tab le  accelerometers and c o r t i c a l  and subcor t ica l  leads 

were below s i g n i f i c a n t  l eve l s  a t  fundamental d r i v i n g  frequencies below 

11 c/sec, although s i g n i f i c a n t  coherence peaks appeared a t  other EEG 

frequencies. Shaking i n  the range 11 t o  17 c/sec produced many coherent 

re la t i onsh ips  a t  fundamental d r i v i n g  frequencies, and a t  harmonical ly 

r e l a t e d  and unre lated EEG frequencies. 

Coherence 

B i l a t e r a l  sect ion o f  the eighth nerve d i d  no t  abo l i sh  t h i s  d r i v ing .  

Phys io log ica l  mechanisms which might under ly t h i s  d r i v i n g  are discussed, 

i nc lud ing  the r o l e  o f  abdominal, thorac ic  and c e r v i c a l  t issues. 

B r i e f  c e n t r i f u g i n g  t o  h igh  G l eve l s  was fo l lowed by paroxysmal 

c o r t i c a l  and subcor t ica l  slow wave a c t i v i t y ,  associated w i t h  missed 

cardiac beats . 
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Leqends t o  Fiqures 

F ig.  1. Models of  autospectral  contours i n  normal monkey before and 

dur ing shaking a t  decreasing frequencies from 17 t o  5 c/sec. 

EEG spectrum i s  depicted on ordinates, v i b r a t i o n  spectrum on 

abscissae, and spect ra l  power on Z-axis ( in  microvol ts  squared 

per cyc le  per second) f o r  v i sua l  cor tex (A), amygdala (B), 

nucleus centrum medianum (C), midbrain r e t i c u l a r  format ion 

(D), and head accelerometer (E). 
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Fig. 2. Models constructed as in Fig. 1 for EEG spectra in monkey 

after bilateral vestibular nerve section, for visual cortex 

(A),  amygdala (B), centrum medianum (C), midbrain reticular 

formation (D), hippocampus (E) and table accelerometer (F). 
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Fig .  3 .  Plo ts  o f  coherence ( 1  inear p red ic tab i  1 i ty )  between centrum 

medianum and v i sua l  cortex (A), v e r t i c a l  head accelerometer 

( B ) ,  and tab le  accelerometer (C) dur ing  v ib ra t ion .  S im i la r  

p l o t s  a re  shown between v i sua l  cor tex and midbrain r e t i c u l a r  

formation (D), head accelerometer (E) and tab le  accelerometer 

(F). 

spectrum, and Z-axis the l e v e l  o f  coherence. With 12 degrees 

o f  freedom, coherence levels  were s i g n i f i c a n t  above 0.516. 

S i g n i f i c a n t  coherence levels  a t  the shaking frequency a re  

shown i n  s o l i d  black, and a t  PO n t s  away from the shaking 

frequency i n  s t i p p l e  (see t e x t )  

Ordinates show EEG spectrum, abscissae the v i b r a t i o n  
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Fig.  4. Plots of coherence as i n  Fig.  3 between the table accelerometer 

and visual cortex ( A ) ,  amygdala (B) ,  centrum medianurn ( C ) ,  

midbrain re t icu lar  formation (D), and hippocampus (E), a f t e r  

b i l a t e r a l  8th nerve section. With 24 degrees of freedom, 

coherence levels were s igni f icant  above 0.516. 
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Fig. 5. Effects o f  compound transverse and spin accelerations on EEG 

during booster prof i le fo r  attainment of orbital f 1 ight (A).  

Frequency analyses show major changes in energy distribution 

following high G "pulse" in hippocampus (B), visual cortex 

(C) and amygdala (D). 
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Fig.  6. Paroxysms o f  h igh amplitude slow waves i n  c o r t i c a l  and 

subcor t ica l  s t ructures (D) dur ing r e s t i n g  phase a f t e r  126 

accelerat ion,  showing missed cardiac beats dur ing EEG 

paroxysms, but not  i n  intervening i n te rva l s .  E f f e c t s  of  

sp in  and cen t r i f uge  on EEG are c l e a r l y  evident (E). 

Abbreviat ions: L. V I S .  CX., l e f t  v i sua l  cortex; R. AMYG., 

r i g h t  amygdala; R. HIPP., r i g h t  hippocampus; R. MB.R. F., 

r i ght m i  dbra i n r e t i c u l a r  format i on; EKG, electrocardiogram. 
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